

Computer

Organization

Prepared By:-

Madhu Madhan

OBJECTIVES

After reading this chapter, the reader should

be able to:

Distinguish between the three components of a

computer hardware.
List the functionality of each component.

 Understand memory addressing and calculate the

number of bytes for a specified purpose.

 Distinguish between different types of memories.

Understand how each input/output device works.

GENERAL REGISTER ORGANISATION

ADDRESSING MODES

• Addressing Modes:

• * Specifies a rule for interpreting or modifying the

• address field of the instruction (before the operand

• is actually referenced)

•

• * Variety of addressing modes

• - to give programming flexibility to the user

• - to use the bits in the address field of the

• instruction efficiently

•

TYPES OF ADDRESSING MODES

Implied Mode
Address of the operands are specified implicitly
in the definition of the instruction
- No need to specify address in the instruction
- EA = AC, or EA = Stack[SP], EA: Effective Address.

Immediate Mode
Instead of specifying the address of the operand,
operand itself is specified
- No need to specify address in the instruction

- However, operand itself needs to be specified
- Sometimes, require more bits than the address
- Fast to acquire an operand

Register Mode
Address specified in the instruction is the register address
- Designated operand need to be in a register
- Shorter address than the memory address
- Saving address field in the instruction
- Faster to acquire an operand than the memory addressing
- EA = IR(R) (IR(R): Register field of IR)

TYPES OF ADDRESSING MODES

Register Indirect Mode
Instruction specifies a register which contains
the memory address of the operand

- Saving instruction bits since register address
is shorter than the memory address

- Slower to acquire an operand than both the
register addressing or memory addressing

- EA = [IR(R)] ([x]: Content of x)

Auto-increment or Auto-decrement features:
Same as the Register Indirect, but:

- When the address in the register is used to access memory, the
value in the register is incremented or decremented by 1 (after or before

the execution of the instruction)

TYPES OF ADDRESSING MODES

Direct Address Mode

Instruction specifies the memory address which

can be used directly to the physical memory

- Faster than the other memory addressing modes

- Too many bits are needed to specify the address

for a large physical memory space

- EA = IR(address), (IR(address): address field of IR)

Indirect Addressing Mode
The address field of an instruction specifies the address of a memory location

that contains the address of the operand
- When the abbreviated address is used, large physical memory can be

addressed with a relatively small number of bits
- Slow to acquire an operand because of an additional memory access
- EA = M[IR(address)]

PROGRAM INTERRUPT
Types of Interrupts:

External interrupts
External Interrupts initiated from the outside of CPU and Memory
- I/O Device -> Data transfer request or Data transfer complete
- Timing Device -> Timeout
- Power Failure

Internal interrupts (traps)
Internal Interrupts are caused by the currently running program
- Register, Stack Overflow
- Divide by zero

- OP-code Violation
- Protection Violation

Software Interrupts
Both External and Internal Interrupts are initiated by the computer Hardware.
Software Interrupts are initiated by texecuting an instruction.
- Supervisor Call -> Switching from a user mode to the supervisor mode

-> Allows to execute a certain class of operations
which are not allowed in the user mode

RISC: REDUCED INSTRUCTION

Historical Background

IBM System/360, 1964

SET COMPUTERS

- The real beginning of modern computer architecture
- Distinction between Architecture and Implementation
- Architecture: The abstract structure of a computer

seen by an assembly-language programmer

Architecture Implementation

Continuing growth in semiconductor memory and microprogramming
-> A much richer and complicated instruction sets

=> CISC(Complex Instruction Set Computer)

- Arguments advanced at that time
Richer instruction sets would simplify compilers
Richer instruction sets would alleviate the software crisis

- move as much functions to the hardware as possible
- close Semantic Gap between machine language
and the high-level language

Richer instruction sets would improve the architecture quality

High-Level
Language

Compiler
Instruction

Set

-program

Hardware

CHARACTERISTICS OF RISC
Common RISC Characteristics

- Operations are register-to-register, with only LOAD and STORE

accessing memory

- The operations and addressing modes are reduced

Instruction formats are simple

More characteristics are as:

- Relatively few instructions
- Relatively few addressing modes
- Memory access limited to load and store instructions
- All operations done within the registers of the CPU
- Fixed-length, easily decoded instruction format
- Single-cycle instruction format
- Hardwired rather than microprogrammed control

COMPLEX INSTRUCTION SET COMPUTERS: CISC

High Performance General Purpose Instructions

Characteristics of CISC:

1. A large number of instructions (from 100-250 usually)
2. Some instructions that performs a certain tasks are not used frequently.
3. Many addressing modes are used (5 to 20)
4. Variable length instruction format.
5. Instructions that manipulate operands in memory.

MAJOR COMPONENTS OF CPU
Storage Components:

Registers
Flip-flops

Execution (Processing) Components:
Arithmetic Logic Unit (ALU):
Arithmetic calculations, Logical computations, Shifts/Rotates

Transfer Components:
Bus

Control Components:
Control Unit

ALU

Control Unit

Register

File

MEMORY STACK ORGANIZATION
Memory with Program, Data,

and Stack Segments

- A portion of memory is used as a stack with a
processor register as a stack pointer

- PUSH: SP  SP - 1

M[SP]  DR
- POP: DR  M[SP]

SP  SP + 1

- Most computers do not provide hardware to check
stack overflow (full stack) or underflow(empty stack)

1000

PC

Program

(instructions)

Data

stack

AR

INSTRUCTION FORMAT
Instruction Fields

OP-code field - specifies the operation to be performed

Address field - designates memory address(s) or a processor register(s)
Mode field - specifies the way the operand or the

effective address is determined

The number of address fields in the instruction format
depends on the internal organization of CPU

- The three most common CPU organizations:

Single accumulator organization:

ADD X /* AC  AC + M[X] */

General register organization:

ADD R1, R2, R3 /* R1  R2 + R3 */

ADD R1, R2 /* R1  R1 + R2 */

MOV R1, R2 /* R1  R2 */

ADD R1, X /* R1  R1 + M[X] */

Stack organization:

PUSH X /* TOS  M[X] */

ADD

THREE, AND TWO-ADDRESS INSTRUCTIONS

Three-Address Instructions:

Program to evaluate X = (A + B) * (C + D) :

ADD R1, A, B /* R1  M[A] + M[B] */

ADD R2, C, D /* R2  M[C] + M[D] */

MUL X, R1, R2 /* M[X]  R1 * R2 */

- Results in short programs
- Instruction becomes long (many bits)

Two-Address Instructions:

Program to evaluate X = (A + B) * (C + D) :

MOV R1, A /* R1  M[A] */
ADD R1, B /* R1  R1 + M[B] */
MOV R2, C /* R2  M[C] */
ADD R2, D /* R2  R2 + M[D] */
MUL R1, R2 /* R1  R1 * R2 */

MOV X, R1 /* M[X]  R1 */

ONE, AND ZERO-ADDRESS INSTRUCTIONS
One-Address Instructions:

- Use an implied AC register for all data manipulation
- Program to evaluate X = (A + B) * (C + D) :

LOAD A /* AC  M[A] */
ADD B /* AC  AC + M[B] */
STORE T /* M[T]  AC */
LOAD C /* AC  M[C] */
ADD D /* AC  AC + M[D] */
MUL T /* AC  AC * M[T] */
STORE X /* M[X]  AC */

Zero-Address Instructions:
- Can be found in a stack-organized computer
- Program to evaluate X = (A + B) * (C + D) :

PUSH A /* TOS  A */
PUSH B /* TOS  B */
ADD /* TOS  (A + B) */
PUSH C /* TOS  C */
PUSH D /* TOS  D */
ADD /* TOS  (C + D) */
MUL /* TOS  (C + D) * (A + B) */
POP X /* M[X]  TOS */

MULTIPROCESSOR
• A multiprocessor is a computer system with two or more central processing

units (CPUs), with each one sharing the common main memory as well as
the peripherals. This helps in simultaneous processing of programs.

• The key objective of using a multiprocessor is to boost the system’s
execution speed, with other objectives being fault tolerance and
application matching.

Benefits of using a multiprocessor include:

• Enhanced performance

• Multiple applications

• Multiple users

• Multi-tasking inside an application

• High throughput and/or responsiveness

• Hardware sharing among CPUs

DIFFERENT WAYS OF

USING A MULTIPROCESSOR

• As a uniprocessor, such as single instruction, single data (SISD)

• Inside a single system for executing multiple, individual series of instructions in

multiple perspectives, such as multiple instruction, multiple data (MIMD)

• A single series of instructions in various perspectives, such as single instruction,

multiple data (SIMD), which is usually used for vector processing

• Multiple series of instructions in a single perspective, such as multiple instruction,

single data (MISD), which is used for redundancy in failsafe systems and, occasionally,

for describing hyper-threading or pipelined processors

PIPELINING

• Pipelining is the process of accumulating instruction from the processor

through a pipeline. It allows storing and executing instructions in an orderly

process. It is also known as pipeline processing.

• Pipelining is a technique where multiple instructions are overlapped during

execution. Pipeline is divided into stages and these stages are connected

with one another to form a pipe like structure. Instructions enter from one

end and exit from another end.

• Pipelining increases the overall instruction throughput.

• In pipeline system, each segment consists of an input register followed by

a combinational circuit. The register is used to hold data and combinational

circuit performs operations on it. The output of combinational circuit is

applied to the input register of the next segment.

Pipeline system is like the modern day assembly line setup in factories. For

example in a car manufacturing industry, huge assembly lines are setup and at

each point, there are robotic arms to perform a certain task, and then the car

moves on ahead to the next arm.

MIMD COMPUTERS
MIMD computers are consisting of 'n' processing units; each with its own

stream of instruction and each processing unit operate on unit operates on a

different piece of data. MIMD is the most powerful computer system that

covers the range of multiprocessor systems. The block diagram of MIMD

computer is shown.

SIMD COMPUTERS
• SIMD computers are consisting of ‘n' processing units receiving a single

stream of instruction from a central control unit and each processing unit

operates on a different piece of data. Most SIMD computers operate

synchronously using a single global dock. The block diagram of SIMD

computer is shown below:

•

http://ecomputernotes.com/fundamental/introduction-to-computer/control-unit

THANK YOU

	GENERAL REGISTER ORGANISATION
	TYPES OF ADDRESSING MODES
	Implied Mode
	in the definition of the instruction
	Immediate Mode
	operand itself is specified
	- However, operand itself needs to be specified
	- Fast to acquire an operand
	Address specified in the instruction is the register address
	- Shorter address than the memory address
	- Faster to acquire an operand than the memory addressing
	Register Indirect Mode
	- Saving instruction bits since register address
	- Slower to acquire an operand than both the register addressing or memory addressing
	Auto-increment or Auto-decrement features: Same as the Register Indirect, but:

	TYPES OF ADDRESSING MODES (1)
	PROGRAM INTERRUPT
	Types of Interrupts:
	Internal interrupts (traps)
	Software Interrupts

	RISC: REDUCED INSTRUCTION
	SET COMPUTERS
	CHARACTERISTICS OF RISC
	COMPLEX INSTRUCTION SET COMPUTERS: CISC
	High Performance General Purpose Instructions Characteristics of CISC:
	2. Some instructions that performs a certain tasks are not used frequently.
	4. Variable length instruction format.

	MAJOR COMPONENTS OF CPU
	Storage Components:
	Execution (Processing) Components:
	Transfer Components:
	Control Components:

	MEMORY STACK ORGANIZATION
	Memory with Program, Data, and Stack Segments

	INSTRUCTION FORMAT
	Instruction Fields

	THREE, AND TWO-ADDRESS INSTRUCTIONS
	Three-Address Instructions:
	Two-Address Instructions:

	ONE, AND ZERO-ADDRESS INSTRUCTIONS
	One-Address Instructions:
	Zero-Address Instructions:

	MULTIPROCESSOR
	DIFFERENT WAYS OF
	PIPELINING
	MIMD COMPUTERS

