LESSON PLAN

Name of the
Faculty: RinaDiscipline: Civil ENGINEERINGSemester: 4thSubjectSoil and Foundation Engg.Lesson Plan
Duration: 15 WEEKS(From 22/3/2021 to 2/7/2021)Work Load
(Lecture) per
week (in
hours): Theory-04 ; Practical-02

	THEORY			PRACTICAL			
WEEK	LECTURE DAY	ТОРІС	WEEK	PRACTICAL DAY	Expt. No.	Experiment	
1st	1st	Introduction of the subject	1st -	1st	1	To determine the moisture content of A given sample of soil	
	2nd	Importanceof soil studies in Civil Engineering					
	3rd	Geological origin of soils with special reference to soil profiles in India		2nd	1	To determine the moisture content of A given sample of soil	
	4th	residual and transported soil, alluvial deposits, lake deposits, local soil found in J&K, dunes and loess					
2nd	1st	glacial deposits, black cotton soils,condition in which above deposits are formed and their engineering characteristics	2nd	1st	2	Auger Boring and Standard Penetration Test a) Identifying the equipment and accessories b) Conducting boring and SPT at a given location	
	2nd	Names of organizations dealing with soil engineering work in India, soil map of India					
	3rd	Physical Properties of Soils:Constituents of soil and representation by a phase diagram		2nd	2	Auger Boring and Standard Penetration Test a) Identifying the equipment and accessories b) Conducting boring and SPT at a given location	
	4th	Definitions of void ratio, porosity, water content,					
3rd	1st	degree of saturation, specific gravity, unit weight, bulk density/bulk unit weight,	Зrd	1st	2	Auger Boring and Standard Penetration Test c) Collecting soil samples and their identification d) Preparation of boring log and SPT graphs	
	2nd	dry unit weight, saturated unit weight and submerged unit weight of soil grains and correlation between them					
	3rd	Simple numerical problems with the help of phase diagrams		2nd	2	Auger Boring and Standard Penetration Test c) Collecting soil samples and their identification d) Preparation of boring log and SPT graphs e) Interretation of test results	
	4th	Classification and Identification of Soils Particle size, shape on engineering properties soil,particle size classification of soils					
4th	1st	Gradation and its influence on engineering properties	4th	1st	3	Extraction of Disturbed and Undistrubed Samples a) Extracting a blocksample b) Extracting a tube sample	
	2nd	Relative density and its use in describing cohesionless soils					
	3rd	Behaviour of cohesive soils with change in water content, Atterberg's limit definitions, use and practical significance		2nd	3	Extraction of Disturbed and Undistrubed Samples a) Extracting a blocksample b) Extracting a tube sample	

	4th	Field identification tests for soils				
5th	1st	Soil classification system as per BIS 1498; basis, symbols,major division sand sub divisions, groups, plasticity chart; procedure for classification of a given soil	5th	1st		Extraction of Disturbed and Undistrubed Samples c) Extracting a disturbed samples for me Chemical analysis. d) Field identification of samples
	2nd	Flow of Water Through Soils: Concept of permeability and its importance			3	
	3rd	Darcy's law, coefficient of permeability, seepage velocity and factors affecting permeability		2nd		Extraction of Disturbed and Undistrubed Samples c) Extracting a disturbed samples for me Chemical analysis. d) Field identification of samples
	4th	Comparison of permeability of different soils as per BIS			3	
	1st	Measurement of permeability in the laboratory		1st		Field Density Measurement (Sand Replacement and Core Cutter Method) a) Calibration of sand b) Conducting field density test at a given leasting
	2nd	Effective Stress: (Concept only): Stresses in subsoil	6th		4	location
6th	3rd	Definition and meaning of total stress, effective stress and neutral stress		2nd		Field Density Measurement (Sand Replacement and Core Cutter Method) a) Calibration of sandb) Conducting field density test at a given
	4th	Principle of effective stress			4	location
	1st	Importance of effective stress in engineering problems	7th	1st		Field Density Measurement (Sand Replacement and Core Cutter Method) c) Determination of water content d) Computation and interpretation of results
7th	2nd	Deformation of Soils : Meaning, conditions/situations of occurrence with emphasis on practical significance of: a) Consolidation and settlement			4	
	3rd	b) Creep c) Plastic flow		2nd		Field Density Measurement (Sand Replacement and Core Cutter Method) c) Determination of water content d) Computation and interpretation of results
	4th	d)Heaving e)Lateral movement f)Freeze and thaw of soil			4	

8th	1st	Definition and practical significance of compression index, coefficient of consolidation, degree of consolidation	Oth	101		Liquid Limit and Plastic Limit Determination: a) Identifying various grooving tools b) Preparation of sample
	2nd	Meaning of total settlement, uniform settlement and differential settlement; rate of settlement and their effects		151	5	
	3rd	Settlement due to construction operations and lowering of water table	δίη			Liquid Limit and Plastic Limit Determination: a) Identifying various grooving tools b) Preparation of sample
	4th	Tolerable settlement for different structures as per BIS		2nd	5	
	1st	Shear Strength Characteristics of Soil: Concept and Significance of shear strength	9th	1st		Liquid Limit and Plastic Limit Determination: c) Conducting the test d) Observing soil behaviour during tests e) Computation, plotting and interpretation of results
	2nd	Factors contributing to shear strength of cohesive and cohesion less soils,Coulomb's law			5	
901	3rd	Examples of shear failure in soils		2nd		Liquid Limit and Plastic Limit Determination: c) Conducting the test d) Observing soil behaviour during tests e) Computation, plotting and interpretation of results
	4th	Compaction: Definition and necessity of compaction		210	5	
10th	1st	Laboratory compaction test (standard and modified proctor test as per BIS definition and importance of optimum water content	10th	1st		Mechanical Analysis a) Preparation of sample b) Conducting sieve analysis c) Computation of results
	2nd	maximum dry density; moisture dry density relationship for typical soils with different compactive efforts			6	
	3rd	Metals:Ferrous metals: Composition, properties and uses of cast iron, mild steel, HYSD steel, high tension steel as per BIS.		2nd		Mechanical Analysis a) Preparation of sample b) Conducting sieve analysis c) Computation of results
	4th	Compaction control; Density control, measurement of field density by core cutter method and sand replacement method, moisture			6	
	1st	Proctor's needle and its use, thickness control, jobs of an embankment supervisor in relation to compaction	11th	1st		Mechanical Analysis d) Plotting the grain size distribution curve e) Interpretation of the curve
1146	2nd	Soil Exploration: Purpose and necessity of soil exploration			6	
TTUT	3rd	Reconnaissance, methods of soil exploration, Trial pits,borings (auger,wash, rotary, percussion to be briefly dealt		and		Mechanical Analysis d) Plotting the grain size distribution curve e) Interpretation of the curve
	4th	Sampling; undisturbed, disturbed and representative samples; selection of type of sample; thin wall and piston samples; area ratio,		2110	6	
12th	1st	samples and their significance, number and quantity of samples, resetting, sealing and preservation of samples.Presentation of soil investigation results	12th	1st		Laboratory Compaction Tests (Standard Proctor Test) a) Preparation of sample b) Conducting the test c) Observing soil behaviour during test d) Computation of results and plotting e) Determination of optimum moisture content and maximum dry
	2nd	Definition and significance of ultimate bearing capacity, net safe bearing capacity and allowable bearing pressure			7	density
	3rd	Guidelines of BIS (IS6403) for estimation of bearing capacity of soil		0~4		Laboratory Compaction Tests (Standard Proctor Test) a) Preparation of sample b) Conducting the test c) Observing soil behaviour during test d) Computation of results and plotting e) Determination of ontimum moisture context and maximum day
	4th	Concept of vertical stress distribution in soils due to foundation loads, pressure bulb		Znu	7	density

13th	1st	Applications of SPT, unconfined compression test and direct shear test in estimation of bearing capacity Plate load test (no procedure details) and its		1st		Demonstration of Unconfined Compression Test a) Specimen preparation b) Conducting the test c) Plotting the graph d) Interpretation of results and finding/bearing capacity
	2nd	limitations			8	
	3rd	Factors affecting bearing capacity	13th	and		Demonstration of Unconfined Compression Test a) Specimen preparation b) Conducting the test c) Plotting the graph d) Interpretation of results and finding/bearing capacity
	4th	Bearing Capacity of soil Concept of bearing capacity		Zhù	8	
14th	1st	Improvement of bearing capacity by sand drain method	14th	1st		Demonstration of: a) Direct Shear and Vane Shear Teston sandy soil samples b) Permeability test apparatus
	2nd	compaction, use of geo synthetics, use of geo synthetics			9	
	3rd	Foundation Engineering: Concept of shallow and deep foundation;		2nd		Demonstration of: a) Direct Shear and Vane Shear Teston sandy soil samples b) Permeability test apparatus
	4th	types of shallow foundations: isolated combined, strip mat, and their suitability. Factors affecting the depth of shallow foundations			9	
15th	1st	deep foundations, type of piles and their suitability	454	1st		Internal Viva
	2nd	pile classification on the basis of material, pile group and pile				
	3rd	Revision	1501	2nd		Internal Viva
	4th	Revision				