LESSON PLAN

NAME OF THE FACULTY: - Ms INDU

DISCIPLINE: - Computer Engg

SEMESTER:- 3rd

SUBJECT:-

Digital Electronics

Week	Theory		Practical	
	Lecture Day	Topic (Including assignment/test)	Practical	Торіс
1 st	1st	Introduction to Digital electronics	1st	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates
	2nd	Distinction between analog and digital signal.		
	3rd	Applications and advantages of digital signals.		
2 nd	1st	Introduction to Binary, octal and hexadecimal number system:	2nd	Realisation of logic functions with the help of
	2nd	conversion from decimal and hexadecimal to binary and vice- versa		NAND or NOR gates
	3rd	Binary addition and subtraction including binary points.		
3 rd	1st	1's and 2's complement method of addition/subtraction.	3 rd	- To design a half adder using XOR and NAND gates and
	2nd	Assignment and Revision		verification of
	3rd	Concept of code, weighted and non-weighted codes,		its operation - Construction of a full adder circuit using XOR and NAND gates and verify its operation
4 th	1st	examples of 8421, BCD, excess-3 and Gray code.	Internal viva for the conducted 3 practical's	
	2nd	Concept of parity, single and double parity and error detection		
	3rd	Assignment and revision		
	Jiu	7.55igninent and revision		

5 th	1st	a) Concept of negative and positive logic	4th	Verification of truth table for positive edge triggered, negative	
	2nd	Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR gate		edge triggered, fregative edge triggered, level triggered IC flip-flops (At least	
	3rd	Definition, symbols and truth tables of EXOR Gates, NAND and NOR as universal gates		one IC each of D latch , D flip-flop, JK flip-flops).	
6 th	1st	Introduction to TTL and CMOS logic families	5 th	Verification of truth table for encoder and decoder ICs, Mux and DeMux	
	2nd	Postulates of Boolean algebra, De Morgan's Theorems.			
	3rd	Implementation of Boolean (logic) equation with gates			
7 th	1st	Karnaugh map (upto 4 variables) and simple application in developing combinational logic circuits	6 th	To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their operation.	
	2nd	Assignment and revision Half adder and Full adder circuit, design and implementation.			
	3rd	4 bit adder circuit, Four bit decoder circuits for 7 segment display and decoder/driver ICs.			
8 th	1st	Basic functions and block diagram of MUX and DEMUX with different ICs	Internal	viva for the conducted 6 practical's	
	2nd	Basic functions and block diagram of Encoder			
	3rd	Concept and types of latch with their working and applications			
9 th	1st	Operation using waveforms and truth tables of RS, flip flops.	7th	To design a 4 bit ring counter and verify its operation	
	2nd	Operation using waveforms and truth tables of T, D flip flop			
	3rd				

		Operation using waveforms and truth tables of Master/Slave JK		
10 th	1st	Introduction on latch and flip flop	8.	Use of
	2nd	Difference between a latch and a flip flop		Asynchronous Counter ICs (7490
	3rd	Assignment and Revision		or 7493)
11 th	1st	Introduction to Asynchronous and Synchronous counters	Internal viva for the conducted all practical's	
	2nd	Introduction of Binary counters		
	3rd	Divide by N ripple counters,		
12 th	1st	Decade counter, Ring counter		
	2nd	Introduction and basic concepts including shift left and shift right.		Revision
	3rd	Serial in parallel out, serial in serial out, parallel in serial out, parallel in parallel out.		
13 th	1st	Universal shift register		
13	2nd	Working principle of A/D and D/A converters		
	3rd	Brief idea about different		
		techniques of A/D conversion		
		and study of :		
		Stair step Ramp A/D converter		
14 th	1st	Dual Slope A/D converter		
14	2nd	Successive Approximation A/D		
		Converter		
		Detail study of :		
		Binary Weighted D/A converter		
	3rd	R/2R ladder D/A converter		
		- Applications of A/D		
		and D/A converter.		
15 th	1st	Memory organization, classification of semiconductor memories (RAM, ROM, PROM, EPROM, EEPROM),		
	2nd	static and dynamic RAM,		
	2110	introduction to		
		74181 ALU IC L		
	3rd	Assignment and Revision		
16 th	1st	Introduction to Asynchronous		
	T	and Synchronous counters		

	2 nd	Revision	
	3 rd	Class_Test	
17 th	1 st	Revision of 2 units	
	2 nd	Do	
	3 rd	Revision and Test	