Lesson Plan

Name of the Faculty :Sh. Amit

Discipline : Mechanical Engg.

Semester : 5th Subject : MD

Lesson plan duration: 15 weeks (from September, 2023 to December, 2023)

	Theory	
Week	Lecture Day	Topic (including assignments /tests)
Week 1	1 st	Design – Definition, Type of design, necessity of design
	2 nd	Comparison of designed and undesigned work
	3 rd	, Design procedure
	4 th	Characteristics of a good designer
	1 st	stress, strain, factor of safety,
Week 2	2 nd	factors affecting factor of safety,
	3 rd	stress concentration,
	4 th	methods to reduce stress concentration,
Week 3	1 st	fatigue, endurance limit.
	2 nd	Engineering materials and their mechanical properties
	3 rd	Selection of materials, criteria of material selection
	4 th	Design Failure
	1 st	Various design failures- maximum stress theory,
Week 4	2 nd	Classification of loads
	3 rd	Design under tensile, compressive and torsional loads.
	4 th	Design of Shaft
	1 st	

1		
Week 5		
vveek 5	2 nd	Type of shaft, shaft materials,
	3 rd	Type of loading on shaft,
	4 th	standard sizes of shaft available
	1 st	Shaft subjected to torsion only
Week 6		Only
	2 nd	determination of shaft diameter
		Strength criterion
	4 th	Rigidity criterion
	1 st	Determination of shaft
Week 7		diameter
	2 nd	Determination of shaft
		diameter (hollow and solid shaft) subjected to
		combined
	ard	torsion and bending.
	3 rd	Design of Key
	4 th	Types of key, materials of key, functions of key
	1 st	Failure of key (by Shearing and Crushing).
Week 8	2 nd	Design of key
		(Determination of key dimension)
<u> </u>	3 rd	Effect of keyway on
		shaft strength.
		(Figures and problems).
	4 th	Temporary Joint:
	1 st	Design of key
	2 nd	Temporary and permanent
Week 9	~l	joints,
	3 rd	Design of Joints

	4 th	Knuckle Joints
	1 st	Different parts of the joint,
	_	Different parts of the joint,
Week 10	2 nd	material used for the joint,
	3 rd	type of knuckle
	4 th	Joint, design of the knuckle joint.
	1 st	Cotter Joint
Week 11	2 nd	Different parts of the spigot and socket joints,
	3 rd	Design of spigot and socket joint.
-	4 th	Permanent Joint:
Week 12	1 st	Welded Joint - Welding symbols. Type of welded joint,
	2.4	
	2 nd	Strength of combined parallel and transverse weld.
	3 _{rd}	Different modes of rivet joint failure.
	4 th	Design of riveted joint
Week 13	1 st	Lap and butt, single and multi riveted joint.
	2 nd	Design of Flange Coupling
	3 rd	Necessity of a coupling, advantages of a coupling,

	4 th	types of couplings,
	1 st	design of flange coupling.
Week 14	2 nd	Design of Screwed Joints
	3 rd	Introduction, Advantages and Disadvantages of screw joints,
	4 th	Important terms used in screw threads,
Week 15	1 st	Initial stresses due to screw up forces,
	2 nd	Design of power screws
	3 rd	Assignment & Revision
	4 th	Revision